Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.18.452826

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in more than 1603 million cases worldwide and 3.4 million deaths (as of May 2021), with varying incidences and death rates among regions/ethnicities. Human genetic variation can affect disease progression and outcome, but little is known about genetic risk factors for SARS-CoV-2 infection. The coronaviruses SARS-CoV, SARS-CoV-2 and HCoV-NL63 all utilize the human protein angiotensin-converting enzyme 2 (ACE2) as the receptor to enter cells. We hypothesized that the genetic variability in ACE2 may contribute to the variable clinical outcomes of COVID-19. To test this hypothesis, we first conducted an in silico investigation of single-nucleotide polymorphisms (SNPs) in the coding region of ACE2 gene. We then applied an integrated approach of genetics, biochemistry and virology to explore the capacity of select ACE2 variants to bind coronavirus spike protein and mediate viral entry. We identified the ACE2 D355N variant that restricts the spike protein-ACE2 interaction and consequently limits infection both in vitro and in vivo. In conclusion, ACE2 polymorphisms could modulate susceptibility to SARS-CoV-2, which may lead to variable disease severity.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Death
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.20.444757

ABSTRACT

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies and have been successfully employed for the treatment of viral diseases. Humans express twelve IFN-alpha () subtypes, which activate downstream signalling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in type I IFN immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19, therefore, early administration of type I IFNs may be protective against life-threatening disease. Here we comprehensively analysed the antiviral activity of all IFN subtypes against SARS-CoV-2 to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFN subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate and low antiviral IFNs. In particular IFN5 showed superior antiviral activity against SARS-CoV-2 infection. Dose-dependency studies further displayed additive effects upon co-administered with the broad antiviral drug remdesivir in cell culture. Transcriptomics of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting and prototypical genes of individual IFN subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in type I IFN signalling pathways, negative regulation of viral processes and immune effector processes for the potent antiviral IFN5. Taken together, our data provide a systemic, multi-modular definition of antiviral host responses mediated by defined type I IFNs. This knowledge shall support the development of novel therapeutic approaches against SARS-CoV-2.


Subject(s)
COVID-19 , Metabolism, Inborn Errors , Virus Diseases
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.19.440481

ABSTRACT

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus displayed remarkable efficacy against authentic B.1.351 virus. Each of these 3 mAbs in combination with one neutralizing Ab recognizing non-competing epitope exhibited synergistic effect against authentic SARS-CoV-2 virus. Surprisingly, structural analysis revealed that 58G6 and 13G9, encoded by the IGHV1-58 and the IGKV3-20 germline genes, both recognized the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly bound to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrated prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. These 2 ultrapotent neutralizing Abs can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Weight Loss
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-215131.v1

ABSTRACT

Accumulating mutations on SARS-CoV-2 Spike (S) protein may increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, in a panel of receptor binding domain (S-RBD) specific monoclonal antibodies (mAbs) with high neutralizing potency against authentic SARS-CoV-2, at least 6 of them were found to efficiently block the pseudovirus of 501Y.V2, a highly transmissible SARS-CoV-2 variant with escape mutations. The top 3 neutralizing Abs (13G9, 58G6 and 510A5) exhibited comparative ultrapotency as those being actively pursued for clinical development. Interestingly, the antigenic sites for the majority of our neutralizing Abs overlapped with a single epitope (13G9e) on S-RBD. Further, the 3-dimensional structures of 2 ultrapotent neutralizing Abs 13G9 or 58G6 in complex with SARS-CoV-2 S trimer demonstrated that both Abs bound to a steric region within S472–490. Moreover, a specific linear region (S450–457) was identified as an additional target for 58G6. Importantly, our cryo-electron microscopy (cryo-EM) analysis revealed a unique phenomenon that the S-RBDs interacting with the fragments of antigen binding (Fabs) of 13G9 or 58G6 encoded by the IGHV1-58 and the IGKV3-20 gene segments were universally in the ‘up’ conformation in all observed particles. The potent neutralizing Abs presented in the current study may be promising candidates to fulfill the urgent needs for the current pandemic of SARS-CoV-2, and may of fundamental value for the next-generation vaccine development.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.20.297242

ABSTRACT

Coronavirus interaction with viral receptor is a primary genetic determinant of host range and tissue tropism. SARS-CoV-2 utilizes ACE2 as the receptor to enter the host cell in a species-specific manner. We and others have previously shown that ACE2 orthologs from New World monkeys, koala and mouse cannot interact with SARS-CoV-2 to mediate viral entry, and this defect can be restored by humanization of the restrictive residues in New World monkey ACE2. To better understand the genetic determinants of susceptibility of ACE2 orthologs to viral entry, we compared koala and mouse ACE2 sequences with human ortholog, and identified the key residues in koala or mouse ACE2 that restrict its viral receptor activity. Humanization of these critical residues could render the capabilities of koala and mouse ACE2 to bind viral spike protein and facilitate the viral entry. Our work identifies the genetic determinant of ACE2 for SARS-CoV-2 susceptibility, and a single mutation could restore the mouse ACE2 receptor activity, providing a potential avenue for the development of mouse model of SARS-CoV-2.

6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.21.306357

ABSTRACT

Less than a year after its emergence, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 22 million people worldwide with a death toll approaching 1 million. Vaccination remains the best hope to ultimately put this pandemic to an end. Here, using Trimer-Tag technology, we produced both wild-type (WT) and furin site mutant (MT) S-Trimers for COVID-19 vaccine studies. Cryo-EM structures of the WT and MT S-Trimers, determined at 3.2 Angstrom and 2.6 Angstrom respectively, revealed that both antigens adopt a tightly closed conformation and their structures are essentially identical to that of the previously solved full-length WT S protein in detergent. These results validate Trimer-Tag as a platform technology in production of metastable WT S-Trimer as a candidate for COVID-19 subunit vaccine.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.18.302901

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a highly contagious virus that underlies the current COVID-19 pandemic. SARS-CoV-2 is thought to disable various features of host immunity and cellular defense. The SARS-CoV-2 nonstructural protein 1 (Nsp1) is known to inhibit host protein translation and could be a target for antiviral therapy against COVID-19. However, how SARS-CoV-2 circumvents this translational blockage for the production of its own proteins is an open question. Here, we report a bipartite mechanism of SARS-CoV-2 Nsp1 which operates by: (1) hijacking the host ribosome via direct interaction of its C-terminal domain (CT) with the 40S ribosomal subunit and (2) specifically lifting this inhibition for SARS-CoV-2 via a direct interaction of its N-terminal domain (NT) with the 5 untranslated region (5 UTR) of SARS-CoV-2 mRNA. We show that while Nsp1-CT is sufficient for binding to 40S and inhibition of host protein translation, the 5 UTR of SARS-CoV-2 mRNA removes this inhibition by binding to Nsp1-NT, suggesting that the Nsp1-NT-UTR interaction is incompatible with the Nsp1-CT-40S interaction. Indeed, lengthening the linker between Nsp1-NT and Nsp1-CT of Nsp1 progressively reduced the ability of SARS-CoV-2 5 UTR to escape the translational inhibition, supporting that the incompatibility is likely steric in nature. The short SL1 region of the 5 UTR is required for viral mRNA translation in the presence of Nsp1. Thus, our data provide a comprehensive view on how Nsp1 switches infected cells from host mRNA translation to SARS-CoV-2 mRNA translation, and that Nsp1 and 5 UTR may be targeted for anti-COVID-19 therapeutics.


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.18.304493

ABSTRACT

COVID-19 vaccines are being rapidly developed and human trials are underway. Almost all of these vaccines have been designed to induce antibodies targeting spike protein of SARS-CoV-2 in expectation of neutralizing activities. However, non-neutralizing antibodies are at risk of causing antibody-dependent enhancement. Further, the longevity of SARS-CoV-2-specific antibodies is very short. Therefore, in addition to antibody-induced vaccines, novel vaccines on the basis of SARS-CoV-2-specific cytotoxic T lymphocytes (CTLs) should be considered in the vaccine development. Here, we attempted to identify HLA-A*02:01-restricted CTL epitopes derived from the non-structural polyprotein 1a of SARS-CoV-2. Eighty-two peptides were firstly predicted as epitope candidates on bioinformatics. Fifty-four in 82 peptides showed high or medium binding affinities to HLA-A*02:01. HLA-A*02:01 transgenic mice were then immunized with each of the 54 peptides encapsulated into liposomes. The intracellular cytokine staining assay revealed that 18 out of 54 peptides were CTL epitopes because of the induction of IFN-{gamma}-producing CD8+ T cells. In the 18 peptides, 10 peptides were chosen for the following analyses because of their high responses. To identify dominant CTL epitopes, mice were immunized with liposomes containing the mixture of the 10 peptides. Some peptides were shown to be statistically predominant over the other peptides. Surprisingly, all mice immunized with the liposomal 10 peptide mixture did not show the same reaction pattern to the 10 peptides. There were three pattern types that varied sequentially, suggesting the existence of an immunodominance hierarchy, which may provide us more variations in the epitope selection for designing CTL-based COVID-19 vaccines. ImportanceFor the development of vaccines based on SARS-CoV-2-specific cytotoxic T lymphocytes (CTLs), we attempted to identify HLA-A*02:01-restricted CTL epitopes derived from the non-structural polyprotein 1a of SARS-CoV-2. Out of 82 peptides predicted on bioinformatics, 54 peptides showed good binding affinities to HLA-A*02:01. Using HLA-A*02:01 transgenic mice, 18 in 54 peptides were found to be CTL epitopes in the intracellular cytokine staining assay. Out of 18 peptides, 10 peptides were chosen for the following analyses because of their high responses. To identify dominant epitopes, mice were immunized with liposomes containing the mixture of the 10 peptides. Some peptides were shown to be statistically predominant. Surprisingly, all immunized mice did not show the same reaction pattern to the 10 peptides. There were three pattern types that varied sequentially, suggesting the existence of an immunodominance hierarchy, which may provide us more variations in the epitope selection for designing CTL-based COVID-19 vaccines.


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.294330

ABSTRACT

Vaccines and antiviral agents are in urgent need to stop the COVID-19 pandemic. To facilitate antiviral screening against SARS-CoV-2 without requirement for high biosafety level facility, we developed a bacterial artificial chromosome (BAC)-vectored replicon of SARS-CoV-2, nCoV-SH01 strain, in which secreted Gaussia luciferase (sGluc) was encoded in viral subgenomic mRNA as a reporter gene. The replicon was devoid of structural genes spike (S), membrane (M), and envelope (E). Upon transfection, the replicon RNA replicated in various cell lines, and was sensitive to interferon alpha (IFN-), remdesivir, but was resistant to hepatitis C virus inhibitors daclatasvir and sofosbuvir. Replication of the replicon was also sensitive overexpression of zinc-finger antiviral protein (ZAP). We also constructed a four-plasmid in-vitro ligation system that is compatible with the BAC system, which makes it easy to introduce desired mutations into the assembly plasmids for in-vitro ligation. This replicon system would be helpful for performing antiviral screening and dissecting virus-host interactions.


Subject(s)
COVID-19 , Hyperprolactinemia , Hepatitis C
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.292631

ABSTRACT

The spread of SARS-CoV-2 confers a serious threat to the public health without effective intervention strategies1-3. Its variant carrying mutated Spike (S) protein D614G (SD614G) has become the most prevalent form in the current global pandemic4,5. We have identified a large panel of potential neutralizing antibodies (NAbs) targeting the receptor-binding domain (RBD) of SARS-CoV-2 S6. Here, we focused on the top 20 potential NAbs for the mechanism study. Of them, the top 4 NAbs could individually neutralize both authentic SARS-CoV-2 and SD614G pseudovirus efficiently. Our epitope mapping revealed that 16/20 potent NAbs overlapped the same steric epitope. Excitingly, we found that one of these potent NAbs (58G6) exclusively bound to a linear epitope on S-RBD (termed as 58G6e), and the interaction of 58G6e and the recombinant ACE2 could be blocked by 58G6. We confirmed that 58G6e represented a key site of vulnerability on S-RBD and it could positively react with COVID-19 convalescent patients plasma. We are the first, as far as we know, to provide direct evidences of a linear epitope that can be recognized by a potent NAb against SARS-CoV-2 S-RBD. This study paves the way for the applications of these NAbs and the potential safe and effective vaccine design.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.293183

ABSTRACT

IntroductionWe present the sequence analysis for 47 complete genomes for SARS-CoV-2 isolates on Turkish patients. To identify their genetic similarity, phylogenetic analysis was performed by comparing the worldwide SARS-CoV-2 sequences, selected from GISAID, to the complete genomes from Turkish isolates. In addition, we focused on the variation analysis to show the mutations on SARS-CoV-2 genomes. MethodsIllumina MiSeq platform was used for sequencing the libraries. The raw reads were aligned to the known SARS-CoV-2 genome (GenBank: MN908947.3) using the Burrows-Wheeler aligner (v.0.7.1). The phylogenetic tree was constructer using Phylip v.3.6 with Neighbor-Joining and composite likelihood method. The variants were detected by using Genome Analysis Toolkit-HaplotypeCaller v.3.8.0 and were inspected on GenomeBrowse v2.1.2. ResultsAll viral genome sequences of our isolates was located in lineage B under the different clusters such as B.1 (n=3), B.1.1 (n=28), and B.1.9 (n=16). According to the GISAID nomenclature, all our complete genomes were placed in G, GR and GH clades. Five hundred forty-nine total and 53 unique variants were detected. All 47 genomes exhibited different kinds of variants. The distinct variants consist of 274 missense, 225 synonymous, and 50 non-coding alleles. ConclusionThe results indicated that the SARS-CoV-2 sequences of our isolates have great similarity with all Turkish and European sequences. Further studies should be performed for better comparison of strains, after more complete genome sequences will be released. We also believe that collecting and sharing any data about SARS-CoV-2 virus and COVID-19 will be effective and may help the related studies.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.293258

ABSTRACT

Comparative functional analysis of the binding interactions between various betacoronavirus strains and their potential human target proteins, such as ACE1, ACE2 and CD26, is critical to our future understanding and combating of COVID-19. Here, employing large replicate sets of GPU accelerated molecular dynamics simulations, we statistically compare atom fluctuations of the known human target proteins in both the presence and absence of different strains of the viral receptor binding domain (RBD) of the S spike glycoprotein. We identify a common interaction site between the N-terminal helices of ACE2 and the viral RBD in all strains (hCoV-OC43, hCoV-HKU1, MERS-CoV, SARS-CoV1, and SARS-CoV-2) and a second more dynamically complex RBD interaction site involving the ACE2 amino acid sites K353, Q325, and a novel motif, AAQPFLL (386-392) in the more recent cross-species spillovers (i.e. absent in hCoV-OC43). We use computational mutagenesis to further confirm the functional relevance of these sites. We propose a "one touch/two touch" model of viral evolution potentially involved in functionally facilitating binding interactions in zoonotic spillovers. We also observe these two touch sites governing RBD binding activity in simulations on hybrid models of the suspected viral progenitor, batCoV-HKU4, interacting with both the human SARS target, ACE2, and the human MERS target, CD26. Lastly, we confirm that the presence of a common hypertension drug (lisinopril) within the target site of SARS-CoV-2 bound models of ACE1 and ACE2 acts to enhance the RBD interactions at the same key sites in our proposed model. In the near future, we recommend that our comparative computational analysis identifying these key viral RBD-ACE2 binding interactions be supplemented with comparative studies of site-directed mutagenesis in order to screen for current and future coronavirus strains at high risk of zoonotic transmission to humans. STATEMENT OF SIGNIFICANCEWe generated structural models of the spike glycoprotein receptor binding domain from recent and past betacoronavirus outbreak strains aligned to the angiotensin 1 converting enzyme 2 protein, the primary target protein of the SARS-CoV-2 virus causing COVID 19. We then statistically compared computer simulated molecular dynamics of viral bound and unbound versions of each model to identify locations where interactions with each viral strain have dampened the atom fluctuations during viral binding. We demonstrate that all known strains of betacoronavirus are strongly interactive with the N-terminal helix region of ACE2. We also identify a more complex viral interaction with three novel sites that associates with more recent and deadly SARS strains, and also a bat progenitor strain HKU4.


Subject(s)
COVID-19 , Hypertension
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.266775

ABSTRACT

The global spread of SARS-CoV-2 is posing major public health challenges. One unique feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site, the function of which remains uncertain. We found that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site instead utilizes a less efficient endosomal entry pathway. This idea was supported by the identification of a suite of endosomal entry factors specific to Sdel virus by a genome-wide CRISPR-Cas9 screen. A panel of host factors regulating the surface expression of ACE2 was identified for both viruses. Using a hamster model, animal-to-animal transmission with the Sdel virus was almost completely abrogated, unlike with Sfull. These findings highlight the critical role of the S1/S2 boundary of the SARS-CoV-2 spike protein in modulating virus entry and transmission.

14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.24.264192

ABSTRACT

SARS-CoV-2 contains a PRRA polybasic cleavage motif considered critical for efficient infection and transmission in humans. We previously reported that virus variants with spike protein S1/S2 junction deletions spanning this motif are attenuated. Here we characterize a further cell-adapted SARS-CoV-2 variant, Ca-DelMut. Ca-DelMut replicates more efficiently than wild type or parental virus in cells, but causes no apparent disease in hamsters, despite replicating in respiratory tissues. Unlike wild type virus, Ca-DelMut does not induce proinflammatory cytokines in hamster infections, but still triggers a strong neutralizing antibody response. Ca-DelMut-immunized hamsters challenged with wild type SARS-CoV-2 are fully protected, demonstrating sterilizing immunity.

15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.24.260901

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a {beta}-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins, namely Spike S, Envelope E, Membrane M and Nucleoprotein N proteins. The involvement of each of these proteins and their interplays during the assembly process of this new virus are poorly-defined and are likely {beta}-coronavirus-type different. Therefore, we sought to investigate how SARS-CoV-2 behaves for its assembly by expression assays of S, in combination with E, M and/or N. By combining biochemical and imaging assays, we showed that E and M regulate intracellular trafficking of S and hence its furin-mediated processing. Indeed, our imaging data revealed that S remains at ERGIC or Golgi compartments upon expression of E or M, like for SARS-CoV-2 infected cells. By studying a mutant of S, we showed that its cytoplasmic tail, and more specifically, its C-terminal retrieval motif, is required for the M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlighted that E and M induce a specific maturation of S N-glycosylation, which is observed on particles and lysates from infected cells independently of its mechanisms of intracellular retention. Finally, we showed that both M, E and N are required for optimal production of virus-like-proteins. Altogether, our results indicated that E and M proteins influence the properties of S proteins to promote assembly of viral particles. Our results therefore highlight both similarities and dissimilarities in these events, as compared to other {beta}-coronaviruses. Author SummaryThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. Its viral particles are composed of four structural proteins, namely Spike S, Envelope E, Membrane M and Nucleoprotein N proteins, though their involvement in the virion assembly remain unknown for this particular coronavirus. Here we showed that presence of E and M influence the localization and maturation of S protein, in term of cleavage and N-glycosylation maturation. Indeed, E protein is able to slow down the cell secretory pathway whereas M-induced retention of S requires the retrieval motif in S C-terminus. We also highlighted that E and M might regulate the N glycosylation maturation of S independently of its intracellular retention mechanism. Finally, we showed that the four structural proteins are required for optimal formation of virus-like particles, highlighting the involvement of N, E and M in assembly of infectious particles. Altogether, our results highlight both similarities and dissimilarities in these events, as compared to other {beta}-coronaviruses.


Subject(s)
Protein S Deficiency , Severe Acute Respiratory Syndrome , COVID-19
16.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-61074.v1

ABSTRACT

The pandemic of COVID-19 caused by SARS-CoV-2 has posed serious threats to global health and economy, thus calling for the development of safe and effective vaccines. The receptor-binding domain (RBD) in the spike protein of SARS-CoV-2 is responsible for its binding to ACE2 receptor. It contains multiple dominant neutralizing epitopes and serves as an important antigen for the development of COVID-19 vaccines. Here, we showed that immunization of mice with a candidate subunit vaccine consisting of SARS-CoV-2 RBD and Fc fragment of human IgG, as an immunopotentiator, elicited high titer of RBD-specific antibodies with robust neutralizing activity against both pseudotyped and live SARS-CoV-2 infections. The mouse antisera could also effectively neutralize infection by pseudotyped SARS-CoV-2 with several natural mutations in RBD and the IgG extracted from the mouse antisera could also show neutralization against pseudotyped SARS-CoV and SARS-related coronavirus (SARSr-CoV). Vaccination of human ACE2 transgenic mice with RBD-Fc could effectively protect mice from the SARS-CoV-2 challenge. These results suggest that SARS-CoV-2 RBD-Fc has good potential to be further developed as an effective and broad-spectrum vaccine to prevent infection of the current SARS-CoV-2 and its mutants, as well as future emerging SARSr-CoVs and re-emerging SARS-CoV.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.25.20161869

ABSTRACT

Pandemic SARS-CoV-2 has infected over 10 million people and caused over 500,000 mortalities. Vaccine development is in urgent need to stop the pandemic. Despite great progresses on SARS-CoV-2 vaccine development, the efficacy of the vaccines remains to be determined. Deciphering the interactions of the viral epitopes with their elicited neutralizing antibodies in the convalescent COVID-19 population inspires the vaccine development. In this study, we devised a peptide array composed of 20-mer overlapped peptides of spike (S), membrane (M) and envelope (E) proteins, and performed a screening with 120 COVID-19 convalescent serums and 24 non-COVID-19 serums. We identified five SARS-CoV-2-specific dominant epitopes that reacted with above 40% COVID-19 convalescent serums. Epitopes in the receptor-binding domain (RBD) of S ill reacted with the convalescent serums. Of note, two peptides non-specifically interacted with most of the non-COVID-19 serums. Neutralization assay indicated that only five serums completely blocked viral infection at the dilution of 1:200. By using a peptide-compete neutralizing assay, we found that three dominant epitopes partially competed the neutralization activity of several convalescent serums, suggesting antibodies elicited by these epitopes played an important role in neutralizing viral infection. The epitopes we identified in this study may serve as vaccine candidates to elicit neutralizing antibodies in most vaccinated people or specific antigens for SARS-CoV-2 diagnosis.


Subject(s)
COVID-19
18.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.21.107565

ABSTRACT

Recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic. Currently, there is no vaccine available for preventing SARS-CoV-2 infection. Like closely related severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 also uses its receptor-binding domain (RBD) on the spike (S) protein to engage the host receptor, human angiotensin-converting enzyme 2 (ACE2), facilitating subsequent viral entry. Here we report the immunogenicity and vaccine potential of SARS-CoV-2 RBD (SARS2-RBD)-based recombinant proteins. Immunization with SARS2-RBD recombinant proteins potently induced a multi-functional antibody response in mice. The resulting antisera could efficiently block the interaction between SARS2-RBD and ACE2, inhibit S-mediated cell-cell fusion, and neutralize both SARS-CoV-2 pseudovirus entry and authentic SARS-CoV-2 infection. In addition, the anti-RBD sera also exhibited cross binding, ACE2-blockade, and neutralization effects towards SARS-CoV. More importantly, we found that the anti-RBD sera did not promote antibody-dependent enhancement of either SARS-CoV-2 pseudovirus entry or authentic virus infection of Fc receptor-bearing cells. These findings provide a solid foundation for developing RBD-based subunit vaccines for SARS-CoV2.


Subject(s)
COVID-19
19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.30.071290

ABSTRACT

The SARS-CoV-2 infection is spreading rapidly worldwide. Efficacious antiviral therapeutics against SARS-CoV-2 is urgently needed. Here, we discovered that protoporphyrin IX (PpIX) and verteporfin, two FDA-approved drugs, completely inhibited the cytopathic effect produced by SARS-CoV-2 infection at 1.25 M and 0.31 M respectively, and their EC50 values of reduction of viral RNA were at nanomolar concentrations. The selectivity indices of PpIX and verteporfin were 952.74 and 368.93, respectively, suggesting broad margin of safety. Importantly, PpIX and verteporfin prevented SARS-CoV-2 infection in mice adenovirally transduced with human ACE2. The compounds, sharing a porphyrin ring structure, were shown to bind viral receptor ACE2 and interfere with the interaction between ACE2 and the receptor-binding domain of viral S protein. Our study suggests that PpIX and verteporfin are potent antiviral agents against SARS-CoV-2 infection and sheds new light on developing novel chemoprophylaxis and chemotherapy against SARS-CoV-2.


Subject(s)
COVID-19
20.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.22.046565

ABSTRACT

The pandemic of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health threat. Epidemiological studies suggest that bats are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. It has been shown that human, palm civet, pig and bat ACE2 can support virus entry, while the murine ortholog cannot. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. We found that ACE2 is expressed in a wide range of species, with especially high conservation in mammals. By analyzing amino acid residues of ACE2 critical for virus entry, based on structure of SARS-CoV spike protein interaction with human, bat, palm civet, pig and ferret ACE2, we identified approximately eighty ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. Functional assays showed that 44 of these mammalian ACE2 orthologs, including those of domestic animals, pets, livestock, and animals commonly found in zoos and aquaria, could bind SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. In summary, our study demonstrates that ACE2 from a remarkably broad range of species can facilitate SARS-CoV-2 entry. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL